Volatile compounds and antioxidant capacity of the bio-oil obtained by pyrolysis of Japanese red pine (pinus densiflora siebold and zucc.).

نویسندگان

  • Jayanta Kumar Patra
  • Sung Hong Kim
  • Hyewon Hwang
  • Joon Weon Choi
  • Kwang-Hyun Baek
چکیده

In the present study, sawdust bio-oil (SBO) manufactured by fast pyrolysis of Japanese red pine (Pinus densiflora Siebold and Zucc.) sawdust was analyzed for its volatile chemical compound composition and evaluated for its free radical scavenging potential, inhibition of lipid peroxidation and reducing power. Gas chromatography and mass spectroscopy revealed 29 volatile compounds, comprising 97.6% of the total volatile compounds in SBO. The antioxidant potential of SBO in terms of IC50 values was 48.44 µg/mL for hydroxyl radical scavenging, 89.52 µg/mL for 1,1-diphenyl-2-picrylhydraxyl radical scavenging, 94.23 µg/mL for 2,2'-azino-bis[3-ethylbenzothiazoline-6-sulphonic acid] radical scavenging, and 136.06 µg/mL for superoxide radical scavenging activity. The total phenol content in SBO was 5.7% gallic acid equivalent. Based on the composition of its volatile compounds, high free radical scavenging potential and antioxidant properties, SBO could be used as a source of antioxidant compounds, flavoring agents and nutraceuticals in the food, pharmaceutical, and cosmetic industries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phytotoxicities of fluoranthene and phenanthrene deposited on needle surfaces of the evergreen conifer, Japanese red pine (Pinus densiflora Sieb. et Zucc.).

Polycyclic aromatic hydrocarbons (PAHs) have been widely studied with respect to their carcinogenic and mutagenic effects on animals and human cells. Phenanthrene (PHE) and fluoranthene (FLU) effects on the needle photosynthetic traits of 2-year-old Japanese red pine (Pinus densiflora Sieb. et. Zucc.) seedlings were investigated. Three months after fumigation of foliage with solutions containin...

متن کامل

Host Deception: Predaceous Fungus, Esteya vermicola, Entices Pine Wood Nematode by Mimicking the Scent of Pine Tree for Nutrient

BACKGROUND A nematophagous fungus, Esteya vermicola, is recorded as the first endoparasitic fungus of pine wood nematode (PWN), Bursaphelenchus xylophilus, in last century. E. vermicola exhibited high infectivity toward PWN in the laboratory conditions and conidia spraying of this fungus on Japanese red pine, Pinus densiflora, seedlings in the field protected the pine trees from pine wilt disea...

متن کامل

Complex environmental factors affecting the decline of Pinus densiflora in the Seto Inland Sea area of western Japan

This study reconsidered the cause of forest decline of Japanese red pine (Pinus densiflora Sieb. et Zucc.) in the Seto Inland Sea area, western Japan. Although the decline in pine forests was attributed to pine-wood nematode infection, the stress of air pollution was also shown to have negative physiological effects on pine needles. Secondary pollutants related to NOx accumulate in the morning ...

متن کامل

Identification of genes upregulated by pinewood nematode inoculation in Japanese red pine.

Pine wilt disease caused by the pinewood nematode (PWN), Bursaphelenchus xylophilus (Steiner et Buhrer) Nickle, has destroyed huge areas of pine forest in East Asia, including Japan, China and Korea. No protection against PWN has been developed, and the responses of pine trees at the molecular level are unrecorded. We isolated and analyzed upregulated or newly induced genes from PWN-inoculated ...

متن کامل

Pathogenicity of Aseptic Bursaphelenchus xylophilus

Pine wilt is a disease of pine (Pinus spp.) caused by the pine wood nematode (PWN), Bursaphelenchus xylophilus. However, the pathogenic mechanism of pine wilt disease (PWD) remains unclear. Although the PWN was thought to be the only pathogenic agent associated with this disease, a potential role for bacterial symbionts in the disease process was recently proposed. Studies have indicated that a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 20 3  شماره 

صفحات  -

تاریخ انتشار 2015